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A major limitation to fully integrated ecosystem based fishery management approaches is a lack of in-
formation on the spatial distribution of marine species and the environmental conditions shaping these
distributions. This is particularly problematic for deep-water species that are hard to sample and are data
poor. The past decade has seen the rapid development of a suite of advanced species distribution, or
ecological niche, modelling approaches developed specifically to support efficient and targeted man-
agement. However, model performance can vary significantly and the appropriateness of which methods
are best for a given application remains questionable. Species distribution models were developed for
three commercially valuable Hawaiian deep-water eteline snappers: Etelis coruscans (Onaga), Etelis
carbunculus (Ehu) and Pristipomoides filamentosus (Opakapaka). Distributional data for these species was
relatively sparse. To identify the best method, model performance and distributional accuracy was as-
sessed and compared using three approaches: Generalised Additive Models (GAM), Boosted Regression
Trees (BRT) and Maximum Entropy (MaxEnt). Independent spatial validation data found MaxEnt con-
sistently provided better model performance with ‘good’ model predictions (AUC ¼40.8). Each species
was influenced by a unique combination of environmental conditions, with depth, terrain (slope) and
substrate (low lying unconsolidated sediments), being the three most important in shaping their dis-
tributions. Sustainable fisheries management, marine spatial planning and environmental decision
support systems rely on an understanding species distribution patterns and habitat linkages. This study
demonstrates that predictive species distribution modelling approaches can be used to accurately model
and map sparse species distribution data across marine landscapes. The approach used herein was found
to be an accurate tool to delineate species distributions and associated habitat linkages, account for
species-specific differences and support sustainable ecosystem-based management.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Management of marine resources has evolved from single
species approaches to more holistic ecosystem based management
approaches in order to integrate ecosystem, bioregional and soci-
etal facets based on ecosystem boundaries rather than sectoral or
jurisdictional boundaries [1–3]. The National Oceanic and
ment and Agriculture, Curtin
a.
. Moore).
Atmospheric Administration (NOAA) defines an ecosystem ap-
proach as “management that is adaptive, specified geographically,
takes account of ecosystem knowledge and uncertainties, con-
siders multiple external influences, and strives to balance diverse
social objectives”. The approach recognises the full suite of inter-
actions within an ecosystem as well as human influences [2,4].
This shift in focus involves the implementation of a range of
marine management strategies, including improved marine spatial
planning, to balance conservation objectives with sustainable re-
source use [3,5]. As ecosystem-based management encompasses a
vast array of interactions, it can be seen as a complex process that
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is difficult to implement [4,6]. Therefore, defining clear objectives
has been one of the most important steps. This often involves
identifying focal species or groups of species, such as threatened,
indicator, commercially valuable, predator or prey species, to
provide a thorough understanding of critical ecosystem compo-
nents [7–11]. These species are useful for monitoring an ecosys-
tem’s status, to provide feedback on management progress and to
feed into integrated ecosystem modelling approaches and marine
spatial planning [6, 10, 12, 13].

Commercial scale deep-water fishing in the tropical and sub-
tropical region of the Pacific Ocean began in the 1970 s [14–17].
This so called “bottomfish” fishery targets a group of deep-water
species including snappers (Lutjanidae), groupers (Epinephelidae),
and jacks (Carangidae). Most of these species have a relatively high
age at maturity, long life span and slow growth rate, making them
particularly susceptible to overfishing and therefore in need of
careful management [16, 18–21]. Historically, these species have
been targeted using deep handlines from canoes. While the
modern fishery employs similar handline gear, the use of powered
vessels and advances in technology, such as powered reels to haul
gear and global positioning systems (GPS) to find fishing grounds,
have meaningfully increased fishing efficiency (e.g. [22–24]). As a
result, it has only been in a few places, with extensive and pro-
ductive fishing grounds (e.g. Hawaii, Fiji and Tonga), that larger
commercial ventures have persisted [16, 25].

Recently, with limited potential to further develop commercial
shallow water reef and lagoon fisheries, many Pacific Island
countries have expressed renewed interest in developing their
deep-water fisheries [14, 16, 26]. However, many deep-water
fisheries in the Pacific have proved unviable as catch rates have
quickly dropped from virgin to sustainable levels, and in some
areas, localised depletions have been reported [14, 27]. For ex-
ample, the two most commercially valuable deep-water species in
the Main Hawaiian Islands (MHI), Etelis coruscans and Etelis car-
bunculus, were identified as being in a state of overfishing from as
early as 1989 [27, 28]. In response to steady declines and un-
favourable biological indicators the State of Hawaii implemented
several measures in an effort to restore the fishery [23, 29]. This
included bottomfish restricted fishing areas (BRFAs), a bottomfish
boat registry and the introduction of a non-commercial bag limit.
Further management actions, including temporal closures, have
subsequently been implemented [29]. The BRFAs were designed to
protect 20% of the deeper portion (100–400 m) of the 0–400 m
bottomfish essential fish habitat (EFH) across all islands and banks.
EFH is defined as ‘the water and substrate necessary for fish
spawning, feeding or growth to maturity’ [30, 31], and closing 20%
of the portion occupied by E. coruscans and E. carbunculus was
expected to help replenish their stocks across the Main Hawaiian
Islands. Since their implementation, responses in the size and
abundance of bottomfish within the BRFAs has been variable but
in most cases the most commercially important species increased
in size [32, 33].

When the Hawaiian BRFAs were originally created, the identi-
fication of suitable geographic areas was difficult as there was a
lack of adequate species distribution and essential fish habitat
data. This problem is not uncommon for many marine species,
particularly deep-water species, as preferred habitat and species
distribution data is often sparse. A subsequent review and revision
of the BRFAs in 2005 successfully incorporated more extensive
distribution and habitat data (i.e. fishing records, submersible and
ROV transects, multibeam mapping and commercial catch records)
enabling a more rigorous assessment of how well the BRFAs were
sited. However, more recent developments in the field of species
distribution modelling has seen advances in the accuracy and
power of modelling individual species-environment relationships
providing detailed information on the geographical extent of
species and the environmental drivers shaping their distributions.
These spatially explicit and quantitative assessments of individual
and combined species distributions can contribute to the advice
provided to fishery managers.

Species distribution modelling has developed as a powerful
tool for understanding species-environment relationships and
predicting species distributions across unsampled locations [34,
35]. While initially more commonly used for the terrestrial en-
vironment, research has demonstrated that species distributions
can also be reliably predicted across marine landscapes using
bathymetry and derived terrain variables [8, 36, 37]. Species dis-
tribution modelling approaches have been demonstrated to pro-
vide important and cost-effective tools to reliably model and map
EFH [8, 36]. As sustainable fisheries management shifted towards
ecosystem-based approaches, a restructuring of the management
framework in many areas has moved from species-based Fishery
Management Plans to a place-based Fishery Ecosystem Plans [38].
Developing an accurate understanding of the type and distribution
of EFH supporting these commercially valuable deep-water spe-
cies is a critical need. This requires accurate species distribution
data, as well as accurate environmental and habitat data. Novel
flexible modelling approaches being developed in the species-
environment modelling domain can be explored to fill this data
gap. These approaches not only can be used to inform spatial
management of bottomfish species in Hawaii, but also to poten-
tially provide key inputs for ecosystem-based management of
deep-water stocks across the Indo-Pacific. Indeed, a recent study
has used an ensemble predictive modelling framework to predict
deep-water genera (Etelis, Pristipomoides, and Aphareus) across the
Western Central Pacific Ocean [39]. While the study provides
much needed broadscale information on the spatial distribution (a
resolution of 0.016° or �1 nmi) of these genera across the region it
acknowledges a need for this information at both a higher taxo-
nomic and spatial resolution.

The aim of this study was to identify a robust modelling
method to further improve the accuracy of EFH designations.
Three species distribution modelling approaches were tested to
see which provided the most accurate and ecologically inter-
pretable predictive model; the modelling approaches were: Gen-
eralised Additive Models (GAM), Boosted Regression Trees (BRT)
and Maximum Entropy (MaxEnt). These methods were chosen as
they are widely used and have been demonstrated to provide
strong predictive performance but differ substantially in their
statistical approach [40–42]. The model providing the best pre-
dictive performance was chosen to define the species-environ-
ment relationships and to predict and describe accurate spatial
maps of preferred bottomfish habitat across the area under con-
sideration. Developing an effective modelling approach provides
additional decision support tools for the sustainable management
of the Hawaiian bottomfish fishery and, even more importantly,
for the data sparse deep-water fisheries across the Indo Pacific.
2. Materials and methods

2.1. Study area

The location of this study was in BRFA “F” on the south side of
Penguin Bank off the coast of Molokai, Hawaii (Fig. 1). Historically,
Penguin Bank is one of the most important bottomfish fishing
grounds in the MHI, as it is an extensive relatively shallow shelf
area within easy reach of major population centres and is a site
known to support significant populations of bottomfish [18].



Fig. 1. Details the location of the bottomfish restricted fishing areas (BRFA) across the main Hawaiian Islands (insert) and the location of the research area within BRFA F on
Penguin Banks. Figure details fish survey sites and the spatial extent of the analysis (Penguin Banks), overlayed on the bathymetry.
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2.2. Fish sampling

Bottomfish were surveyed using a baited stereo-video camera
system designed specifically as a fishery-independent tool for
monitoring Hawaiian deep-water fish. The system has been es-
tablished as a flexible and economic tool for assessing bottomfish
[43]. Details of the system are described in Merritt et al. [44] and
an overview of its implementation across the MHI to assess bot-
tomfish populations is reported in Moore et al. [32]. The fish re-
cords used here were collected as part of a monitoring program
that assessed the effectiveness of the BRFAs [32, 33]. Demersal fish
were sampled from April 2008 to December 2011, with a total of
128 samples (independent baited stereo-video camera samples)
collected within BRFA F (Fig. 1).

2.3. Environmental variables

Environmental variables available for the analysis included;
fine scale bathymetry (resolution of 5�5 m) and secondary to-
pographic derivatives calculated in ArcGIS 10.2 including; slope,
Table 1
Description of the geophysical data used in the modelling

Predictor variable Definition

Terrain variables
Bathymetry (depth) Elevation (5 m resolution)
Slopea First derivative of elevation
Aspecta Azimuthal direction of stee
Northnessa Calculated as cos(aspect) re
Eastnessa Calculated as sin(aspect) re
Curvaturea Combined index of profile
Plan curvaturea Second derivative of elevat
Profile curvaturea Second derivative of elevat

Substrate variables
Hard substrate, high slopeb Based on backscatter data a
Hard substrate, low slopeb Based on backscatter data a
Soft substrate, high slopeb Based on backscatter data a
Soft substrate, low slopeb Based on backscatter data a

a Continuous variable calculated using a 15�15 m mo
b Continuous variable calculated as % substrate based
aspect and curvature (detailed in Table 1; see also Holmes at al
[45]). Because aspect is a circular variable, it was transformed into
two variables; northness (calculated as cos(aspect)) and eastness
(calculated as sin(aspect)). These variables described sites of
north–south aspect and sites of east–west aspect [46]. Substrate
variables were based on slope and a binary classification of back-
scatter data into either hard or soft substrate. These categories had
previously been defined by Kelley et al. [47] based on the type of
habitat categories known to be important to Hawaiian bottomfish
[30, 48]. This categorical data was transformed into a continuous
percentage of habitats present using a 50�50 m moving window
analysis in ArcGIS.

2.4. Model formulation and evaluation

Three Hawaiian bottomfish species; E. coruscans, E. carbunculus
and Pristipomoides filamentosus were chosen for this study because
they are the most abundant of the deep-water bottomfishes and
have the greatest commercial importance to the fishery [18, 32, 33,
49]. Three different species distribution modelling procedures
.

: average change in elevation/distance
pest slope
presenting north-south aspect
presenting east-west aspect
curvature and plan curvature
ion: concavity/convexity perpendicular to the slope
ion: concavity/convexity parallel to the slope

nalysis and a slope of Z20°
nalysis and a slope of r20°
nalysis and a slope of Z20°
nalysis and a slope of r20°

ving window analysis.
on a 50�50 m moving window analysis.



Table 2
Model performance assessed using 25% of the data withheld from the analysis.

Species Model AUC P-krita % Correcta Kappaa

E. coruscans GAM 0.859 0.21 0.875 0.71
BRT 0.84 0.142 0.75 0.455
MaxEnt 0.874 0.342 0.812 0.565

E. carbunculus GAM 0.797 0.205 0.781 0.508
BRT 0.835 0.115 0.781 0.508
MaxEnt 0.869 0.375 0.875 0.71

P. filamentosus GAM 0.825 0.56 0.718 0.433
BRT 0.607 0.37 0.5 0.5
MaxEnt 0.841 0.442 0.781 0.559

a Values calculated using the threshold-dependent P-fair statistic balancing
model sensitivity and specificity.
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were employed and assessed; Generalised Additive Models (GAM),
Boosted Regression Trees (BRT) and Maximum Entropy (MaxEnt).
The three modelling approaches differ substantially in their sta-
tistical formulation. GAMs use non-parametric smoothing func-
tions to allow flexible description of complex species responses
[50, 51]. Boosted regression trees (BRT) combine both statistical
and machine learning techniques and use boosting to combine
large numbers of simple hierarchical tree models to optimize
predictive performance ( e.g. Elith et al. [40]; Leathwick et al. [51,
52]). MaxEnt [42] is a machine-learning method using the max-
imum entropy method for modelling species geographic dis-
tributions and unlike the other two methods it uses presence-only
data. The modelling algorithms for each approach are described in
Hastie & Tibshirani [50] for GAM; Leathwick et al. [52] for BRT; and
Elith et al. [53]. These species distribution modelling approaches
are reviewed in Guisan and Zimmermann [54], Elith and Graham
[34] and Robinson et al. [55].

GAMs were developed on presence-absence data in R (version
2.15.1, 2012 the R Foundation for Statistical Computing) using the
GAM function. Models were created with a backward stepwise
selection eliminating variables from a full model with all pre-
dictors until a minimum AIC was reached. BRTs were also devel-
oped in R using the GBM (generalised boosted models) function
with the custom scripts of Elith et al. [56], and a selected bag
fraction of 0.5, tree complexity of 3 and a learning rate of 0.001.
Regression based models can be sensitive to correlated predictor
variables therefore variables with a correlation greater than
0.7 were removed from the analysis [41, 57]. Maximum Entropy
(MaxEnt) modelling was conducted using version 3.3.3 of the
MaxEnt software package. Presence only samples were modelled
using the default settings with a random 10,000 background
samples selected. Phillips and Dudik [58] argue for default settings
when applying MaxEnt to small or biased datasets as fine tuning
can be unreliable. For all models, 25% of the data was withheld for
independent evaluation of predictive performance. Values were
extracted from the predicted ASCII files in ArcGIS using the point
intercept method and independently evaluated using the thresh-
old-independent AUC (area under the curve) of the ROC (receiver
operating characteristic) curve. Other metrics evaluated included
threshold dependent percentage correctly classified and this in-
formation was corrected for probability of occurrence using the
Kappa statistic. The best performing model was chosen to predict
each species’ distributions and the continuous predicted prob-
ability surface was then converted to presence-absence using the
threshold-dependent P-krit statistic [45] This statistic was calcu-
lated using P-fair which balances model sensitivity and specificity
(Type I and Type II errors).
3. Results

3.1. Model performance

Independent evaluation demonstrated that MaxEnt con-
sistently produced more reliable spatial predictions for all three
species (Table 2). AUC values were between 0.8 and 0.9 indicating
the models provided good predictive performance and further,
map accuracy was consistently high (478% correct). Predictions
produced from the GAMs and BRTs were less accurate and more
variable (Table 2). The GAM provided notably lower predictive
performance for E. carbunculus (an AUC of 0.797% and 78% cor-
rectly classified as opposed to an AUC of 0.869% and 87.5%
correctly classified by MaxEnt) and lower predictive performance
for E. coruscans and P. filamentosus. The BRT failed to provide an
informative model for P. filamentosus (AUC ¼0.607% and 50%
correct) while also providing lower predictive performance
for E. coruscans and E. carbunculus.

3.2. Species-environment relationships

The variable percent contributions produced by the three
modelling approaches are shown in Table 3. Species-environment
relationships identified by MaxEnt show each species responded
to a unique combination of environmental conditions with depth,
terrain (slope) and substrate (low lying unconsolidated sediments)
being the three most important in shaping their distributions. E.
coruscans preferred deep (approx. 200–300 m), steeply sloping
habitats with little flat, unconsolidated substrate while E. carbun-
culus preferred slightly deeper (approx. 250–300 m), but similar
habitats. In contrast, P. filamentosus preferred relatively shallow
(approx. 125–225 m), less steeply sloping habitats with little flat,
unconsolidated substrate.

There was some consistency in environmental variables chosen
across modelling approaches (Table 3). For example, depth was an
important explanatory variable across all modelling approaches.
However, the relative importance of other environmental variables
varied substantially. MaxEnt consistently selected depth, slope and
soft low slope as the three most important explanatory variables.
However, depth provided the greatest percent contribution for E.
carbunculus only, while soft low slope provided the most for E.
coruscans and slope for P. filamentosus. In contrast, the GAMs in-
dicated a higher relative importance of the substrate variables (e.g.
soft low slope and soft high slope) while the BRTs indicated a
higher relative importance of the terrain variables (e.g. slope,
curvature and aspect).

3.3. Predicting species distributions

Predicted species distributions using MaxEnt are shown for the
three species in Fig. 2. Response curves for the three most im-
portant predictor variables (depth, slope and % soft low slope
substrate) in each model are also displayed. The response curves
provide a relatively smooth fit indicating the models are not
overfitting the data. Differences in the spatial extent of habitat
predicted, by each of the three models, for each of the three spe-
cies, are displayed in Fig. 3. Most notable differences can be seen in
for the BRT for E. coruscans and E. carbunculus and the GAM for P.
filamentosus. In the first case the BRTs are including more of the
deeper flat areas for E. coruscans and E. carbunculus while in the
second, the GAM is including more of the shallow flat areas for P.
filamentosus. In both cases the alternative models provide lower
predictive performance and are likely to be overestimating the
spatial extent of habitat. Sampling did extend across the deeper
basin where the BRTs predicted E. coruscans and E. carbunculus to
be present and neither were detected. Therefore, the models are
overestimating the spatial extent of habitat. In contrast, limited



Table 3
Variable percent contribution produced by MaxEnt, GAM and BRT. The three most important predictor variables for each species is highlighted in bold.

Predictor variable Percent contribution

E. coruscans E. carbunculus P. filamentosus

GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt

Depth 8.6 38.5 36.7 76.8 62.3 48 54 61 9.9
Slope 0.5 4.2 7.8 – 5.9 4.6 – 39 36.6
Curvature 0.01 6.8 0.2 – 6.6 0.2 – – –

Plan Curvature – 8.4 – 0.3 2.3 – – – –

Profile Curvature – 7.5 0.5 – 6.7 0.7 1.7 – –

Sin(aspect) 0.05 9.7 1.6 – 4.8 1.2 – – 3.2
Cos(aspect) – 4.3 0.9 – 2.5 0.1 1.2 – 7.7
Hard High Slope 5.9 3 6.3 7.2 1.4 0.3 0.1 – 7.8
Hard Low Slope – 15.2 1.6 15.3 3.3 – – – 0.5
Soft High Slope 19.4 1.6 1.5 – 0.2 0.1 42.9 – 1.4
Soft Low Slope 65.5 – 43 0.3 4 44.8 0.1 – 32.8
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sampling of the shallowest sections of this basin area means the
predicted spatial extent for P. filamentosus by the GAM remains
inconclusive. Additional sampling of these areas would provide
greater discriminatory power.

With MaxEnt consistently providing the most reliable pre-
dictive performance, these models were used to provide an ex-
ample of how they can inform management. Fig. 4 presents the
three species ‘core’ habitat (where all three species are predicted
to co-occur), ‘combined’ habitat (where one or more species are
predicted to occur) and ‘unique’ habitat (where each species exists
on its own). The current EFH definition of 0–400 m equates to
around 74.5% of the research area and 100% of the 100–300 m
depth zone. In contrast, the ‘combined’ bottomfish habitat covers
18.9% of the 100–300 m depth zone, while the predicted ‘core’
bottomfish habitat covers just 2.1%. Unique habitat includes an
additional 0.7% for E. coruscans, 6.7% for E. carbunculus and 7.3% for
P. filamentosus.
4. Discussion

The management of marine resources has evolved to be more
holistic and now involves consideration of multiple facets to ad-
dress cumulative impacts by using an ecosystem-based manage-
ment approach [1, 2, 59]. However, the transition from single
species approaches to ecosystem-based management and place-
based management has been hampered by a paucity of data on
species distributions and the environmental variables shaping
these distributional patterns [2, 8]. Under these circumstances,
modelling approaches can make a significant contribution by po-
tentially identifying important environmental drivers and thus
improving habitat predictions for multiple species across un-
known, and spatially contiguous, locations.

In this study, predictive species distribution modelling was
used to provide both ecological information and spatial informa-
tion to increase the resolution of the EFH designations for each
species. Having an accurate understanding of the extent of EFH
supporting a fishery enables fisheries managers to better target
spatial management arrangements and provide key inputs into
ecosystem models (e.g. Ecosim and Ecospace) in support of eco-
system-based fisheries management [11–13, 60]. In the past a
major deficiency of ecosystem modelling approaches used to
evaluate the impacts of fisheries on ecosystems was the implicit
assumption of homogeneous spatial behaviour [11]. By combining
accurate EFH models with spatially explicit ecosystem models,
such as Ecospace [60], model outputs can be modified by defining
whether a location is a preferred habitat or not. Characterisation of
EFH data provides a platform to evaluate the impacts of fisheries
on ecosystems both in time and space [11].

Outcomes from this study show that the choice of modelling
approach is important when identifying species distributions from
sparse data. Due to the uncertainly associated with model per-
formance, using a number of different modelling approaches en-
ables the best and most informative to be chosen. In our case
MaxEnt consistently provided the best predictive performance.
Had the alternative modelling approaches provided similar pre-
dictive performance, but varying predicted distributions, combin-
ing them in an ensemble can improve overall prediction [39, 61].
Modelling found the three species responded to a unique combi-
nation of environmental conditions, with the majority of the
predicted habitat unique to each species, highlighting the im-
portance of considering individual requirements when managing
deep-water Hawaiian bottomfish as a single management unit. In
light of this, what was define as ‘core’ bottomfish habitat (habitat
where all species are predicted to co-occur) was also calculated to
enable managers to identify the most important spatial areas of
multi-species resource use for management consideration. While
it was established that individual distributions are important, this
approach also enables the highest priority habitat to be identified
and can be used to significantly improve the spatial management
of Hawaiian bottomfish.

The application of species distribution modelling (SDM) in the
marine environment has, until more recently, been rare [55, 62].
Model performance between studies has been highly variable and
dependent on the type of data being modelled, the intended ap-
plication and ultimately the shape of the species responses [34, 54,
63]. The selection of which method is best for a certain application
is still in debate [34, 55]. Elith et al. [40] in their review found
MaxEnt's predictive performance to be consistently competitive
with the highest performing methods. This study also demon-
strates that it is a powerful method for modelling sparse data,
outperforming both the GAM and BRT. The models developed are
consistent with the known ecology of the species, accurately de-
scribing the preferred habitat of the three species. However, the
subject is complex and will vary with the species ecology, quality
of the data, shape of the response curve and scale of analysis
[53, 54, 64].

Reasons why MaxEnt outperformed the two presence-absence
models is likely to be a combination of sample size, model cali-
bration and the shape of the species response. Some studies sug-
gest that presence-only data addresses the problem of poor de-
tectability or ‘false’ absences (i.e. locations where a species occurs
but was not detected [65]). However, Elith et al. [53] argues that if
detectability of a species varies from site to site, it will affect both



Fig. 2. Essential bottomfish habitat predictions using MaxEnt (between 100 and 300 m). First panel (a) depicts distribution of habitat (displayed in green) across Penguin
Banks for the three species; (1) Etelis coruscans, (2) Etelis carbunculus and (3) Pristipomoides filamentosus. The second panel (b) provides more detail at a higher spatial
resolution. The third panel (c) provides the response curves for the three most important predictor variables.
Fish illustrations by Les Hata©, Hawaii Department of Land and Natural Resources.

C. Moore et al. / Marine Policy 69 (2016) 32–41 37
the presence and the absence data. Therefore, removing the ab-
sence data will not address limitations of poor detectability. In
general, it is recommended that presence-absence data are used,
when available, as they are less susceptible to sample selection
bias and provide more information for model calibration enabling
better predictive performance [34]. However, in this case the
presence only model outperformed the presence-absence models.
A number of factors contributed to this outcome. First, the default



Fig. 3. Difference in spatial extent of habitat predicted, by each of the three models, for each of the three species (between 100 and 300 m). First panel (a) depicts differences
in predicted habitat for the three species; 1) Etelis coruscans, 2) Etelis carbunculus and 3) Pristipomoides filamentosus. The second panel (b) provides more detail at a higher
spatial resolution. Continuous probabilities of occurrence were converted to presence-absence using the P-fair threshold statistic balancing model sensitivity and specificity.
Fish illustrations by Les Hata©, Hawaii Department of Land and Natural Resources.
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settings within MaxEnt were appropriate for the small sample
size, the species prevalence and the shape of the species response.
In addition, data quality was good and sampling used a stratified
systematic sampling design to minimize bias. Finally, the modelled
response curves did not overfit the data. Therefore, MaxEnt pro-
vided good predictive performance. In contrast, the GAMs and
BRTs were sensitive to the sparse data. For GAMs, small sample
sizes can result in incorrect ‘peaks’ or ‘troughs’ in the modelled



Fig. 4. Combined predicted habitat using MaxEnt for the three bottomfish species (between 100 and 300 m) to illustrate differences in spatial extent: (1) core bottomfish
habitat (where all three species are predicted to co-occur); (2) combined bottomfish habitat (where one or more species are predicted to occur); and 3) unique bottomfish
habitat (where each species exists on its own). The second panel (b) provides more detail at a higher spatial resolution. Continuous probabilities of occurrence were
converted to presence-absence using the P-fair threshold statistic balancing model sensitivity and specificity.
Fish illustrations by Les Hata©, Hawaii Department of Land and Natural Resources.
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response as a consequence of the complexity of the fit allowed
[34]. Few replicates in the shallowest sections of the study area
lead to the GAM overestimating the occurrence of P. filamentosus
and thus reducing predictive performance. BRTs can also be
strongly influenced by sample size with small samples found to
provide models with higher predictive error and small changes in
training data can result in a very different series of splits [56, 66].
In addition, BRTs can have difficulties modelling smooth functions
[34, 56]. Therefore, this study suggests MaxEnt will outperform
more traditional presence-absence modelling when data is sparse,
the sampling unbiased and the environmental response a smooth
function.

The most important outcome from the modelling was that it
demonstrated that each species responded to a unique combina-
tion of environmental conditions, with little overlap. To effectively
manage deep-water snappers as a single management unit,
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differences in these species distributions must be taken into ac-
count. For many years, the overall EFH for the MHI bottomfish
fishery has been the depth range between 0 and 400 m around
each island and bank. This equates to 74.5% of the research area.
This designation was purposely broad to encompass all 12 species
in the fishery as well as all life history stages for each species.
However, in the last couple of decades, research using submersible
observations and fishing surveys has provided more data on life
stage preferences as well as individual species preferences,
showing clear differences in how that depth range is being utilised
and the importance of substrate and terrain, namely hard, high
slope substrates [30,47,48,67]. All studies have found a strong re-
lationship with depth, however studies with access to fine scale
substrate and terrain data (e.g. bathymetric slope) have also been
able to demonstrate its importance [37,39,49,67]. For example,
Misa et al. [49] assessed habitat preferences for 4 targeted bot-
tomfish species and found species-specific differences to both
depth and substrate. In contrast, the study by Gomez et al. [39]
found bathymetric slope to be the poorest predictor of bottomfish
distributions, while depth provided good predictive performance
at very broad spatial scales (41000 m2). They suggest that finer
scale data is needed for more precise predictions of deep-water
groups. Using fine scale bathymetry and backscatter data this re-
search was able to provide more precise, and species-specific, EFH
designations and identified that the area utilised by bottomfish to
be much reduced with individual predicted EFH covering between
9.3% and 10.6% of the research area (P. filamentosus and E. car-
bunculus respectively). This highlights an urgent need for fine scale
data and an accurate method for predicting habitat preferences for
all bottomfish species to understand factors shaping their dis-
tributions and for assessing whether management actions, such as
spatial closures, are achieving their intended purpose in assisting
the long term sustainable management of the fishery. This study
identified unique species-specific distributions and responses to
environmental conditions; therefore each deep-water species
should be modelled separately. The present results suggest that
when treating bottomfish species as an assemblage, a logistical
necessity for management, individual differences must be ac-
counted for to ensure effective management of this fishery.
5. Conclusion

Sustainable fisheries management, marine spatial planning and
environmental decision support systems require a solid under-
standing of species distributions and habitat linkages. This study
demonstrates that predictive species distribution modelling ap-
proaches can be used to accurately model and map sparse species
distribution data across marine seascapes. The approach was
found to be both a cost-effective and accurate tool to support
spatial, or place-based, fisheries management and feed into eco-
system models to support sustainable ecosystem-based fisheries
management. Currently managers and policy makers are looking
for effective tools to support this new management approach. This
study illustrates an approach that fully accounts for individual
differences when treating groups of species as management units.
These models provide the basis from which spatially explicit
ecosystem models can be compiled. As more fine scale environ-
mental data is collected and processed, the application of this
approach across Hawaii and regions of the Indo-Pacific would give
valuable additional insight into the extent of EFH supporting deep-
water species and assess the potential for regions to support
commercially viable deep-water fisheries.
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